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Abstract We investigate a difficult scheduling problem in a semiconductor

manufacturing process that seeks to minimize the number of tardy jobs and

makespan with sequence-dependent setup time, release time, due dates and tool

constraints. We propose a mixed integer programming (MIP) formulation which

treats tardy jobs as soft constraints so that our objective seeks the minimum

weighted sum of makespan and heavily penalized tardy jobs. Although our poly-

nomial-sized MIP formulation can correctly model this scheduling problem, it is so

difficult that even a feasible solution can not be calculated efficiently for small-scale

problems. We then propose a technique to estimate the upper bound for the number

of jobs processed by a machine, and use it to effectively reduce the size of the MIP

formulation. In order to handle real-world large-scale scheduling problems, we

propose an efficient dispatching rule that assigns a job of the earliest due date to a

machine with least recipe changeover (EDDLC) and try to re-optimize the solution

by local search heuristics which involves interchange, translocation and transposi-

tion between assigned jobs. Our computational experiments indicate that EDDLC

and our proposed reoptimization techniques are very efficient and effective. In

particular, our method usually gives solutions very close to the exact optimum for

smaller scheduling problems, and calculates good solutions for scheduling up to 200

jobs on 40 machines within 10 min.
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1 Introduction

In semiconductor manufacturing, wafers must undergo hundreds of processes before

becoming final products. In a clean wafer fab, expensive environment control

equipments can keep the relative humidity at a fixed level and wipe out particles in

the air, to make sure products of high quality are produced via reliable

manufacturing processes. Since the equipments in semiconductor manufacturing

are usually very expensive with short lifetime due to the quick evolution of

manufacturing technologies, how to make the best use of those expensive

equipments within their short lifetime so that the production costs are minimized

becomes an important and urgent issue. In order to reduce production costs, one

should schedule its manufacturing plans to reduce defective fraction, enhance

equipment utilization, reduce inventory and work in process (WIP), and shorten

production cycle time. In particular, we seek a suitable job list for each machine to

first minimize the number of tardy jobs, and then shorten the makespan.

To process large amount of wafers, a wafer fab often uses several tool groups.

The machines in a tool group have similar properties and can process identical

recipes. A recipe is a formula for mixing or preparing some materials for

processing. A recipe change takes a setup time. In practice, most scheduling plans

are often altered on the fly in order to deal with some urgent assignments (usually

called as ‘‘super hot lots’’). Therefore, we need to update scheduling plans in short

time to guarantee a smooth production plan. In general, a good manufacturing plan

should schedule necessary recipe changes in a good order, and be quickly

responsive to urgent jobs, so that more products can be produced in shorter time.

This research focuses on a one-stage scheduling problem often appeared in

semiconductor manufacturing. A job is processed after it is released from its

preceding work station. We assume the following information are given: (1) the

release time, processing time, due date, and required recipe for each job; (2) the

available time, setup time and recipes that can be processed for each machine.

The machines are assumed to be in a perfect condition. Transportation time is

neglected, thus all jobs are assumed to arrive at their next work stations immediately

after finishing their current processes. We schedule to minimize the number of tardy

jobs with minimal makespan. The problem investigated in this paper is NP-hard,

and no literature indicates how to determine an optimal solution to this problem

within polynomial time.

The structure of this paper is as follows: Sect. 2 reviews and summarizes related

literature in scheduling parallel machines; Sect. 3 gives mathematical formulations

for our problem and proposes techniques to reduce the size of original formulations;

Sect. 4 introduces our proposed heuristics including dispatching rules and

reoptimization mechanisms; computational experiments are conducted with anal-

yses in Sects. 5 and 6 concludes this paper.
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2 Literature review

2.1 Scheduling problems

Scheduling problems in manufacturing processes seek best job-machine assign-

ments with some specific objective. Since different job-machine assignments give

different schedules and there are too many feasible arrangements, such problems are

usually very difficult to solve for problem instances of realistic size.

Scheduling problems can be represented in the form a|b|c, where a describes the

machine environment: single machine, parallel machine, job shop and flow shop; b
describes the process constraints: release time, due date, batch processing and

sequence-dependent setup time.; and c contains the information about performance

measure to be considered, which includes makespan, weighted total tardiness and

regular cost function. Zhu and Wilhelm (2006) classified scheduling problems by

machine characteristic, release time, due date, one-stage or multi-stage, batch

processing and setup time as summarized in Tables 1, 2 and 3.

There have been a number of solution methods developed for solving scheduling

problems, including (1) optimizing methods: Branch and Bound (B&B), branch and

cut (B&C), Dynamic Programming (DP), and Mixed Integer Programming (MIP)

solvers, (2) hybrids (methods that combine B&B, DP, or MIP solvers with a

heuristic), and (3) heuristics: metaheuristics such as genetic algorithms (GA),

simulated annealing (SA), Tabu search (TS), decomposition, dispatching rules,

simulation and list scheduling.

Pinedo (1995) showed that a single machine scheduling problem that considers

sequence dependent setup time to minimize the makespan is equivalent to the

Traveling Salesman Problem (TSP), which is NP-hard. More specifically, here in

this paper, we investigate a problem of parallel machines and constraints of

sequence dependent setup time, release time and due date. Therefore, our problem is

also NP-hard.

Table 1 Classification of

machine configuration
Notation Meaning

1 Single machine

Fm Flow shop

FFc Flexible flow shop with c stages in series

FJc Flexible job shop with c work centers

HFc Hybrid flow shop with c stages in series, each with a set

of unrelated machines in parallel

Jm Job shop in which each job has its own predetermined

routing

Pm Identical machines in parallel

Qm Uniform machines in parallel, each operating at a

different speed

Rm Unrelated machines in parallel, each with a unique

processing time for a job

Scheduling unrelated parallel machines in semiconductor manufacturing 345

123



2.2 Dispatching rules

Dispatching rules are set of simple and intuitive decision rules based on greedy

ideas. They are usually used to select the next job to be processed from a set of jobs

to suitable machines, and are widely used for solving real-world scheduling

problems. Most scheduling systems make scheduling decisions based on dispatch-

ing rules which integrate several real time decision rules. Since the scheduling

problems are so complex, different dispatching rules can be proposed based on

different aspects of the complex scheduling problems, and there usually exist no

dominating dispatching rules that can always give better schedules than others in all

Table 2 Classification of processing restrictions

Notation Meaning

Block Blocking can occur in a flow shop because buffers have limited capacities

brbdwn Breakdown or shutdown of machines

bsij(k) Sequence-dependent setup time for batch j immediately after batch i (on machine k)

dj Jobs have due dates

d All jobs have a common due date

Mj Not all machines in parallel are capable of processing job j

nwt Jobs cannot wait between operations in a flow shop

prmp Jobs can be preempted

prec Precedence constraints relate job

prmu A permutation sequence is used in a flow shop

rj Jobs have known release times

recrc Jobs may recirculate to be processed on the same machine several times

sij(k) Sequence-dependent setup time for job j immediately after job i (on machine k)

Table 3 Classification of objective

Notation Meaning

Cmax Makespan

Lmax Maximum lateness
P
ðwjÞCj Total (weighted) completion time

P
ðwjÞTj Total (weighted) tardiness

P
ðwjÞUj (Weighted) number of tardy jobs

P
Ej þ

P
Tj Total earliness/tardiness

P
w
0
Ej þ

P
w
00
Tj Total weighted earliness/tardiness with the same earliness penalty for all jobs

and the same tardiness penalty for all jobs
P

w
0

jEj þ
P

w
00

j Tj Total weighted earliness/tardiness with arbitrary earliness and tardiness

penalties for all jobs
P

sij,
P

sijk ,
P

bsij orP
bsijk

Total setup time with respect to sij, sijk, bsij or bsijk

Q
Minimize cost
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situations. Nevertheless, there do exist some popular dispatching rules that usually

produce good schedules.

Most dispatching rules are based on greedy concepts. In general, dispatching

rules suggest the priority of the jobs to be processed for each machine. The job with

the highest priority is selected to process first. If there exist several jobs of the same

priority, the jobs will be selected by random or some auxiliary rules. Blackstone

et al. (1982) categorized the dispatching rules into four classes by the criteria of job

or machine selections: (1) rules based on processing time: LPT (Haupt 1999), SPT

(Haupt 1999); (2) rules based on due dates: EDD (earliest due date) (Blackstone

et al. 1982); (3) rules other than processing time and due dates: FIFO (Blackstone

et al. 1982), FOL (Wang et al. 2005), LFJ (Pinedo 1995), LFM (Pinedo 1995); (4)

hybrid rules involving two or more rules of previous classes: ATCS (Lee et al.

1997), CR (Haupt 1999), SL (Haupt 1999), WIPQ (Altendorfer et al. 2007). Note

that no dispatching rules can guarantee to give a schedule of no tardy jobs.

2.3 Parallel machine scheduling

To the best of our knowledge, very few researches up to the present provides

mathematical formulations of parallel machine scheduling problems with release

time, due date and sequence dependent setup time. Most research on scheduling jobs

over parallel machines focus on heuristics.

Ovacik and Uzsoy (1995) solved Pm|rj,sij|Lmax by rolling horizon heuristic

(RHP). Schutten (1996) presented a list scheduling algorithm for Pm|rj,sij|Lmax. Kurz

and Askin (2001) formulated Pm|rj,sij|Cmax as an MIP. Kim et al. (2003) solved

Pm|sij|
P

wjTj by a heuristic algorithm combining dispatching rule (EDD) and TS.

Balakrishnan et al. (1999) provided an MIP for Qm|rj,sij|
P

wj

0
Ej ?

P
wj

00
Tj.

Sivrikaya-Serifoglu and Ulusoy (1999) used GA to solve Qm|rj,sij|
P

wj

0
Ej ?

P
wj

00
Tj.

Bilge et al. (2004) applied TS for Qm|rj,sijk|
P

Tj. Arzi and Raviv (1998) suggested

several dispatching rules for Rm|rj,sijk|throughput,
P

sijk and WIP. Bank and

Werner (2001) suggested constructive and iterative algorithms to solve

Rm|rj,d|
P

wj

0
Ej ?

P
wj

00
Tj. Kim and Shin (2003) used TS to solve Rm|rj,sij|Lmax.

Logendran et al. (2007) presented several TS algorithms with different initial

solution finding mechanisms and search mechanisms to investigate Rm|rj,sij|
P

wjTj.

They observed that the solution quality and efficiency may be affected by different

search mechanisms but not by different initial solution finding mechanisms.

2.4 Scheduling in semiconductor manufacturing

In general, semiconductor manufacturing involves hundreds of expensive, compli-

cated and time-consuming processes in short cycle time with good quality.

Therefore, good scheduling techniques become a key to the success of a

semiconductor manufacturer.

Hochbaum and Landy (1997) gave a two-approximation algorithm as a heuristic

that assigns the jobs to batches and then determines the batch sequence so as to

minimize the total flow time for semiconductor burn-in operations. Kim et al. (1998)

investigated new dispatching rules that consider the release control, mask
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scheduling, and batch scheduling at the same time via simulations. Dabbas and

Fowler (2003) proposed a scheduling approach that combines multiple dispatching

criteria in a linear fashion into a single rule to optimize multiple performance

measures. Their results show significant improvement compared with the use of a

single dispatching criterion. Lee et al. (2002) simulated the mechanism of wafer

flows in a systematic way by modeling fabrication processes as layers, where each

layer consists of one non-bottleneck step and one bottleneck step. They gave three

input scheduling rules for the non-bottleneck step and four bottleneck scheduling

rules. Their experiments also indicated that pull type scheduling rules have better

performance than push type rules.

To address the many challenges of the burn-in stage of back-end semiconductor

manufacturing, Jula and Leachman (2010) developed optimization-based and

heuristic-based algorithms for scheduling local decentralized subsystems that

sustain a desired WIP profile in manufacturing systems, and established a closed

loop between higher-level production planners and local schedulers. Their proposed

algorithms outperformed the FIFO-based algorithm commonly used in practice.

Bixby et al. (2006) reported a successful implementation of a scheduling algorithm

that integrates MIP and Constraint Programming (CP) to reduce cycle time, increase

throughput and accelerate hot-lot processing in a fully-automated, leading-edge

semiconductor fab.

In this paper, we focus on the scheduling problem of type Rm|rj,dj,sijk,Mj|P
wUj ? w

0
Cmax. According to the literature, this problem is NP-hard. Most

previous researches in this topic suggest the use of heuristics such as TS, or

dispatching rules to deal with parallel machine scheduling problems with release

time and due date. We will first propose an MIP formulation for this problem and

then reduce its size by some heuristics in Sect. 3. Then, we will also propose several

efficient and effective heuristics for this problem in Sect. 4.

3 An MIP formulation and a size-reduction heuristic

3.1 Notations and an MIP formulation

Suppose the jobs and tool groups are given. A tool group means a set of machines

that can process the same recipes but may spend different processing times, and the

machines in different tool groups may be able to process some identical recipes.

Each job has a recipe to be processed. There is a setup time on a machine to change

recipes for consecutively processing jobs of different recipes. A job can only be

processed after its release time, and has to be completed before its due date. The

objective is to first minimize number of tardy jobs whenever possible, and then

minimize the makespan.

Detailed assumptions are as follows: (1) each job has a recipe to be processed, (2)

job preemption or cancellation is not allowed, (3) each recipe can be performed by

one or more different tool groups, (4) setup times only depend on recipes and

machines, (5) each recipe has its own definite processes and operational time, and
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the time only depends on the machine, and (6) one operation can be processed on

one machine at the same time. The notations of our model are listed as follows:

Indices
j the index of job;

m the index of machine;

p the index for positions in the processing sequence;

r the index of recipe;

Sets
Jr the set of jobs have recipe r;

Jm

0
the set of jobs which can be processed on machine m;

Mj the set of machines which can process job j;
Parameters
pj,m processing time of job j on machine m;

tm,r,r0 setup time from recipe r to recipe r’ on machine m;

rj release time of job j;
dj due date of job j;
MTm available time of machine m;

Ym,0,r =1 if the initial recipe of machine m is recipe r, 0 otherwise;

Np number of jobs which are allowed to be processed by one

machine;

H a very large positive number;

Decision Variables
Xj,m,p =1 if job j is assigned to position p on machine m, 0

otherwise;

Ym,p,r =1 if position p on machine m is assigned to process recipe r,

0 otherwise;

Zm,p,r,r0 =1 if position p on machine m is assigned to process recipe r
and position p ? 1 on machine m is assigned to process

recipe r
0
, 0 otherwise;

Uj =1 if job j is not completed before its due date, 0 otherwise;

Sm,p starting time of position p on machine m;

Cm,p finishing time of position p on machine m;

Cmax Makespan.

We give our first MIP model as follows:

Objective:

Min Z ¼
X

j

HUj þ Cmax ð1Þ

Constraints:

Sm;p þ
X

j2J0m

pj;mXj;m;p ¼ Cm;p 8m; p ð2Þ

Scheduling unrelated parallel machines in semiconductor manufacturing 349

123



Ym;p;r �
X

j2Jr

Xj;m;p 8m; p; r ð3Þ

Zm;p;r;r0 � Ym;p�1;r þ Ym;p;r0 � 1 8m; p; r; r0 ð4Þ

Cm;p þ
X

r

X

r0
tm;r;r0Zm;pþ1;r;r0 � Sm;pþ1 8m; p ð5Þ

MTm þ
X

r

X

r0
tm;r;r0Zm;1;r;r0 � Sm;1 8m ð6Þ

X

j2J0m

Xj;m;p�
X

j2J0m

Xj;m;pþ1 8m; p ð7Þ

rjXj;m;p� Sm;p 8j;m; p ð8Þ
Cm;p þ ðH � djÞXj;m;p � HUj�H 8j;m; p ð9Þ

Cmax�Cm;Np 8m ð10Þ
X

j2J0m

Xj;m;p� 1 8m; p ð11Þ

X

m2Mj

X

p

Xj;m;p ¼ 1 8j ð12Þ

all variables are nonnegative ð13Þ
Figure 1 illustrates a possible schedule on a specific machine. Equation (1) first

minimizes the number of jobs exceeding due date, and then minimizes the

makespan. For a job in position p in the processing sequence on machine m, Eq. (2)

defines how to calculate its finishing time by its starting time and processing time.

Equation (3) defines whether job j belongs to recipe r, and is assigned to position

p on machine m. Equation (4) defines whether there is a recipe changeover time on

machine m between positions p - 1 and p. Equation (5) forces the job on position

p ? 1 to start after the job on position p finishes, for any machine m. Equation (6) is

the application of (5) for position 1. Equation (7) is a consecutive job assignment

constraint, which forces jobs to be assigned consecutively, starting from position 1.

In other words, for any machine, if its position p ? 1 has been assigned a job, then

all previous positions 1,…,p has to be nonempty. Equation (8) is active when

Xj,m,p = 1, which reflects the relationship between release time of job j and the

operation assigned to position p on machine m. Equation (9) is active when

Xj,m,p = 1 and Uj = 0, which reflects the relationship between due date of job j and

the operation assigned to position p on machine m. Note that Eq. (10) imposes that

makespan should be greater or equal to the finishing time of all jobs. Equation (11)

represents the assumption that no more than one operation can be assigned to a

machine simultaneously. Equation (12) imposes that a job can only be assigned to

one position of one machine. For a scheduling problem involves N jobs,

M machines, R recipes, and P positions, there will be MP(N ? R ? R2) ?

N binary variables, 2MP ? 1 real-valued variables and M(2 ? 4P ? 2NP ?

PR ? PR2) ? N constraints in the MIP formulation.
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3.2 A heuristic to reduce the MIP size

For the complete MIP formulation introduced in the previous section, the number of

positions is set to be the number of jobs, which would be the worst case and only

happens in very rare situations. Such an upper bound setting results in much waste

in both storage and computational time, because no single machine will process all

jobs while all other machines are idle in practice. In other words, the complete

formulation usually leads to a huge MIP, usually unsolvable in short time, even

when the number of jobs, machines, and recipes are not too large.

On the other hand, if the manufacturing process is very stable and steady, then

the number of jobs to be processed on each machine may be about the same to each

other and close to the number of jobs divided by the number of machines. In

general, we should try to estimate a good and smaller upper bound on the number of

positions that a machine may be capable of processing, which would in turn help us

derive a smaller MIP formulation.

One may observe that a good schedule would balance the loads for each machine

with few recipe changeovers. In order to reduce the number of recipe changeovers,

we should try to process the jobs of the same recipe as consecutively as possible on

the same machine. Based on this observation, we suggest to use Eq. (13) for

estimating Np, the upper bound on the number of job positions for each machine,

where ni is the number of processable jobs by tool group i, mi is the number of

machines belonging to tool group i, pimin and pimax represent the shortest and longest

processing times of all operations that can be performed by tool group i,
respectively.

Np ¼ max
i

ni

1þ ðmi � 1Þ pi min=pi max

� �

ð13Þ

Theoretically, an extreme case happens when we put all the jobs of the shortest

processing time into a single machine, and use the others (i.e. mi - 1 many) to

process all the other jobs of the longest processing time. With sufficient job sources,

when the machine finishes processing one job of the shortest processing time, the

other machines will finish (mi - 1) pimin/pimax many jobs on average. Thus Eq. (13)

gives an estimate on the average (or steady state) number of job positions for the

machine that processes jobs of the shortest processing time.

Take Fig. 2 as an example. Suppose there are five machines and two recipes for a

tool group i, where eight jobs that need long time to process belong to recipe 1, and

eight jobs that need short time to process belong to recipe 2. Furthermore, suppose

Fig. 1 A possible schedule and its corresponding variables
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the time required for processing a job of recipe 1 is about four times to the time for

processing a job of recipe 2. Thus mi = 5, ni = 8 ? 8 = 16, and pimin/pimax = 4.

Therefore Eq. (13) gives Np = 8, which means it suffices to assign at most 8,

instead of 16, positions for scheduling a job in a machine for this tool group.

With this heuristic, we can successfully reduce the size of MIP, which helps to

solve larger cases in shorter time. However, later in Sect. 5, we will show that

solving our reduced MIP formulation is still too time-consuming, and not so

applicable for some real-world applications which usually require a solution of good

quality within short time. To this end, we propose new dispatching rule and

reoptimization techniques in next section.

4 Heuristics of dispatching rules and reoptimization

4.1 A dispatching rule considering least changeover time

In practice, real-time scheduling is too difficult to implement. Therefore most

applications conduct periodical rescheduling to renew their scheduling decisions

say, every 10 min. In order to get a good solution quickly, we propose a new

dispatching rule named EDDLC (Earliest due date with least changeovers) for this

problem. EDDLC is based on the following two intuitions: (1) try to assign a job to

a machine without recipe changeovers, unless necessary; and (2) if a job is going to

miss its due date, assign it to the first available machine capable of processing its

Fig. 2 A tool group example to illustrate our proposed heuristic to reduce the number of positions for job
assignment in a single machine
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Fig. 3 Flow chart of EDDLC
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recipe. Figure 3 illustrates the flow chart of EDDLC. Details of the job selection

mechanism are presented in Fig. 4.

In procedures of EDDLC, different job-machine assignment mechanisms will be

used, depending on the number of jobs in queue and the number of available

machines at each decision point. In particular, when there is only one job in queue,

EDDLC selects the machine that can process this process with the earliest finishing

time. When there are more than one job in queue and more than one available

machine, for each machine mr that is processing recipe rd, EDDLC first checks

Fig. 4 Flow chart of the EDDLC job selection mechanism
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whether some jobs in queue are going to miss their due dates or not by Eq. (14). If

Eq. (14) is satisfied for doing job ja in mr, then put this job in a list according to its

recipe. After all jobs have been checked for machine mr, EDDLC will select the job

with the earliest due date from the recipe that contains the most jobs satisfying Eq.

(14). The intuition is that EDDLC tries to reduce the number of urgent jobs for the

recipe that contains the largest number of urgent jobs. On the other hand, if all jobs

do not satisfy Eq. (14), which means no jobs are so urgent, and machine mr has no

need to change its current recipe. In this case, machine mr will select the job with

the earliest due date of its current recipe rd to process, if such a job exists.

Otherwise, machine mr will select the job with the earliest due date of the recipe rc

that can be processed on machine mr and has the shortest setup time for recipe

change. If, all the jobs in queue cannot be processed on machine mr, then EDDLC

will skip machine mr and continue to conduct these procedures for the next

available machine.

tnow þ pmax þ
sþ p� i

Nr
� di ð14Þ

In the job selection mechanism Eq. (14), we use pmax to represent the longest

processing time of jobs that belong to the recipe, denote the processing time on the

machine by p, setup time for the recipe on the machine by s, the number of

machines processing the recipe by Nr and due date of the ith job by di where jobs are

sorted by due date. The intuition of Eq. (14) is to put the next job that can be

processed in this machine into consideration, so that when a very urgent job arrives

(so-called ‘‘hot job’’) with the worst case processing time pmax, this machine still has

room to process it without violating its due date. The third term of Eq. (14) in some

sense represents the average time to process job i.
If the inequality of Eq. (14) is satisfied for some job i, it means that job is urgent

(i.e. more likely to be overdue) and thus has higher priority to be processed earlier,

even if a recipe changeover is necessary. Note that Eq. (14) focuses more on tardy

jobs, rather than the makespan. Moreover, Eq. (14) implies that when the number of

machines to process current recipe (Nr) decreases, due date (di) decreases, or setup

time (s) increases, there will be more recipe changeovers.

Here we use an example to illustrate why EDDLC may give a better result than

EDD. Suppose at time 0 there are three jobs in queue with due dates 21, 46, 47 and

recipe 1, 2, 1, respectively. Suppose there is only one machine that currently

processes recipe 1. Suppose each job has processing time 10 and setup time 5. If

EDD rule conducted, we will process job 1, 2, and 3 in order. As a result, their

finishing time becomes 10, 25, and 40, respectively. On the other hand, EDDLC will

process job 1, 3 and 2 in order with finishing times as 10, 35 and 20, respectively. In

this example, the makespan by EDDLC is earlier than which by EDD. More

importantly, if a hot job (denoted as job 4) with recipe 1 arrives at time 19, the

finishing times for jobs 1, 2, 3 and 4 by EDD become 10, 25, 50 and 40, yet which

by EDDLC become 10, 45, 20 and 30. Moreover, EDD gives a tardy job, while

EDDLC give no tardy job. In general, EDDLC tends to give better result for hot jobs

since Eq. (14) already takes pmax into consideration which can absorb the instant

request of processing time caused by hot job.
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4.2 Local search techniques

Since our objective tries to avoid tardy jobs (first priority) and then reduce the

makespan as much as possible, EDDLC does serve its purpose by trying to attain a

similar goal. To further improve the scheduled result, we propose three local search

mechanisms to reoptimize the schedule by EDDLC. Figures 5, 6 and 7 illustrate

how these reoptimization mechanisms work. The following analyses assume each

machine has O(n) jobs to be processed.

Our first mechanism, named ‘‘interchange’’, checks whether interchanging any

two subsequences of scheduled jobs for any two machines improves the objectives,

such as the number of tardy jobs, makespan and average finishing time of jobs

processed by each machine lastly. In particular, for any selected two machines mr

and ms, we select some consecutive jobs (e.g. jobs ja, ja?1, …, jb on mr and jobs jg,

jg?1, …, jn on ms) and exchange them (i.e. jobs jg, jg?1, …, jn to the positions of ja,

ja?1, …, jb on mr, and jobs ja, ja?1, …, jb to the positions of jg, jg?1, …, jn on ms) to

see whether such an interchange improves our objective. Since each machine has

O(n) jobs to be processed, each interchange takes O(n) time to exchange jobs and

estimate the resultant objective values. If we conduct a complete interchange for any

possible subsequence between two specific machines, there will be at most Cn
2 �

Cn
2 ¼ Oðn4Þ interchanges that take an overall O(n5) time. Therefore, conducting

complete interchanges for all possible two of m machines takes Cm
2 � Oðn5Þ ¼

Oðm2n5Þ time.

Our second mechanism, named ‘‘translocation’’, checks whether inserting one

job from one machine to somewhere in the schedule of another machine improves

the objectives. In particular, we select a job ja from machine mr, and then check

whether inserting it before or after the position of another job jb of another machine

ms helps improve the objectives. If yes, then we do the translocation; otherwise,

check for another job, position, or machine. Each insertion takes O(n) time to

estimate its resultant objective values. If we conduct a complete translocation for

any possible job pair between two specific machines, there will be at most Cn
1 �

Cn
1 ¼ Oðn2Þ translocations that take an overall O(n3) time. Therefore, conducting

complete translocations for all possible two of m machines takes Cm
2 � Oðn3Þ ¼

Oðm2n3Þ time.

Fig. 5 The proposed
interchange mechanism
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Our third mechanism, named ‘‘transposition’’, checks whether shifting the

position of a scheduled job within the same machine helps reduce the objectives. In

particular, we select a job ja from machine mr, and then check whether inserting it

before or after the position of another job jb in the same machine helps improve the

objectives. If yes, then we do the transposition; otherwise, check for another job or

position. Each insertion takes O(n) time to estimate its resultant objective values. If

we conduct a complete transposition for any possible job pair in a specific machine,

there will be at most Cn
1 � Cn

1 ¼ Oðn2Þ transpositions that take an overall O(n3)

time. Therefore, conducting complete translocations for all possible machines takes

Cn
1 � Cn

1 ¼ Oðn2Þ time.

4.3 A proposed heuristic algorithm: EffROP

To integrate our proposed methodologies, we describe the steps of EffROP, our

proposed scheduling algorithm, as follows:

Algorithm EffROP
Step 1 Conduct EDDLC dispatching rule

Step 2 Repeat conducting interchange mechanism for the critical

machine to each other machine, until no further improvement

is attained

Step 3 Repeat the interchange mechanism for each machine to each

other machine, until no further improvement is attained

Step 4 Conduct translocation mechanism for each machine to each

other machine

Step 5 Conduct transposition mechanism for each machine

Step 6 If any change occurs in Step 3–5 then

Fig. 6 The proposed
translocation mechanism

Fig. 7 The proposed
transposition mechanism
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Repeat conducting interchange mechanism for the critical

machine to each other machine, until no further improvement

is attained

Step 7 If any change occurs in Step 3–6, then GOTO Step 3
Otherwise, STOP

After conducting EDDLC, algorithm EffROP iteratively applies those three

proposed mechanisms to reoptimize the schedule, until no further improvement is

detected. Although those repeating procedures may seem time-consuming, our

computational experiments show that EffROP can in fact, terminate very fast to a

solution of good quality within short time.

The complexity of EffROP can not be exactly estimated, since we can not bound

the number of improvements in the process. For example, the same interchange

(translocation, or transposition) operation that involves the same jobs, positions and

machines may be conducted again in the process, since the initial condition keeps

changing as long as the objective improves. However, we can estimate the

complexity for each improvement made by one iteration of interchange, translo-

cation or transposition, as discussed in Sect. 4.2.

Among these three proposed reoptimization mechanisms, the most time-

consuming mechanism is the interchange. We create five cases of 160 jobs and

32 machines to test and record the proportions for different number of job

subsequences that have effective interchanges (i.e. interchanges of improved

objective), as shown in Fig. 8. From Fig. 8, we observe that long job subsequences

(e.g. the subsequence of more than 6 consecutive jobs) are almost ineffective, even

if they consume most of the computational time by interchange. On the other hand,

subsequences of 1–3 consecutive jobs contribute more than 95 % of the

improvement created by all possible interchanges. In other words, if we restrict

the number of consecutive jobs (e.g. 1–3) to be interchanged, we save much

computational time while obtaining an objective that may be very close to the

complete interchange mechanism. To this end, we propose a so-called ‘‘position

Fig. 8 Proportion of successful interchange length
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limit’’ technique that only interchanges short job subsequences (i.e. of length less

than or equal to a constant k). In this case, an interchange with position limit (say,

k = 3) for two specific machines requires at most Cn
1 � Cn

1 ¼ Oðn2Þ exchanges.

Since each exchange takes O(n) time to estimate its affect and a complete

interchange checks Cm
1 � Cm

1 ¼ Oðm2Þ possible machine pairs, a complete inter-

change with position limit for all possible machine pairs takes an overall O(m2n3)

time. Our computational tests in the next section also test the effects of position

limit technique, when it is used in conjunction with the EffROP and EDD

dispatching rules.

In literature, Logendran et al. (2007) solved similar scheduling problems by

several TS mechanisms and showed that some of them are good with statistically

significant difference for both objective and running time. To compare the

efficiency and effectiveness of EffROP with TS, we have modified one of the TS

mechanisms by Logendran et al. (2007) with statistically significant difference and

compare it with EffROP. The TS continuously applies interchange and insertion to

find all possible neighbor solutions and selects the best to continue and record it into

a Tabu list of fixed size (TLS), until the number of iterations without improvement

(IWOI) reaches a specified threshold.

5 Computational results and analyses

5.1 Settings for computational experiments

To get an overview on the performance for our proposed mathematical models and

heuristic methodologies, we conduct computational experiments for our MIP

formulations (the complete form, named ‘‘MIP’’, and its reduced form, named

‘‘MIPH’’), EDDLC, EffROP, EffROP with position limit, EDD (based on

Blackstone et al. 1982), EDD combining our reoptimization with position limit,

and TS (from Logendran et al. 2007).

The MIPs are solved by ILOG CPLEX 11.1.1. All the other heuristic algorithms

(including dispatching rule, reoptimization and TS) were coded using C ??. All the

tests are conducted on an Intel machine with Inter(R) Core(TM)2 CPU 6320 @

1.86 GHz, 3 GB of RAM, and Windows XP OS.

Test cases are created based on real-world parameters by following settings: (1) 2

tool groups; (2) 16 recipes; (3) Processing time: U(10,20); (4) Setup time: U(0,5);

(5) Release time: U(0,90); (6) Due date: U(Release time, Release time ?450); (7)

Due time: [Release time ? min{processing time}; (8) Machine available time:

U(0,20); (9) Number of jobs/Number of machines = 5; (10) Number of jobs that

belong to recipe r is created in order of r with distribution U(0,number of rest of the

jobs); (11) Number of machines that belong to tool group i is created with

distribution U(0,number of rest of the machines). If setting (6) produces a job with

due date that is earlier than its release time plus its shortest processing time, setting

(7) will be invoked to force that job to be a so-called ‘‘hot job’’. We create ten cases

for each problem set of different sizes and calculate their averaged performance in
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running time and objectives. Setting (10) produces primary products and subordi-

nate products by number of jobs that belong to different recipes. Setting (11)

changes the number of available machines to simulate maintenance of machines.

We test with 10–200 jobs (with increment of 10) by these settings.

5.2 Sensitivity analysis

To know whether the efficacy and efficiency of EDDLC and our reoptimization

techniques are affected by some problem settings (e.g. the average number of jobs

on a machine, the ratio of processing time to setup time and length of due dates), we

set up the test problems by varying several parameters, as shown in Table 4.

Settings of scenario 1 are the target settings, suggested by a large semiconductor

manufacturing company in Taiwan. We test with 10–200 jobs (with increment of

10) in scenario 1–4, and with 20–200 jobs in scenario 5–8, respectively.

5.3 Results of computational experiments

MIP and MIPH are only tested for problems with 10–50 jobs, since they can not

calculate an optimal solution (sometimes even a feasible solution) for all other

larger problems within 10 min, which is a time interval commonly used for the

purpose of rescheduling in practice. Since scenarios 1, 2, 3 and 4 have similar

tendencies and so do scenarios 5, 6, 7 and 8, here we use the results of scenario 1

and 5 in Tables 5, 6, 7, 8, 9, and 10 to respectively represent the tendency for these

two groups of scenarios.

From Tables 5 and 8, we observe that MIP and MIPH can only deal with small

cases. For cases with more than 30 jobs, MIP could at most obtain a feasible

solution, while MIPH might get an optimal solution for some cases, which shows

that our size-reduction heuristic MIPH does help to improve the solution quality for

solving larger problem within shorter time. All these exact-optimal solution

methods such as MIP and MIPH become too time-consuming for cases with more

than 50 jobs. On the other hand, algorithm EffROP not only can give optimal or

very near optimal solutions within much shorter time for smaller cases, but also

calculate good solutions for large cases.

Table 4 Characteristic of each scenario

Scenario Average # jobs

on a machine

Setup time Due date

1 5 U(0,5) U(Release time, Release time ?450)

2 5 U(0,5) U(Release time, Release time ?225)

3 5 U(0,10) U(Release time, Release time ?450)

4 5 U(0,10) U(Release time, Release time ?225)

5 10 U(0,5) U(Release time, Release time ?450)

6 10 U(0,5) U(Release time, Release time ?225)

7 10 U(0,10) U(Release time, Release time ?450)

8 10 U(0,10) U(Release time, Release time ?225)
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The objective values of EDD and EDDLC are about the same, as shown in

Tables 6, 11, 13 and 14, but EDDLC has much fewer recipe changeovers than EDD

as shown in Table 11, where a recipe changeover rate is defined as the number of

recipe changeovers divided by the number of jobs. From the design of experiments,

we find that recipe changeover rate of EDDLC is affected by setup time, number of

machines and due date evidently, but the recipe changeover rate of EDD is not. The

results are consistent with the design intuition of Eq. (14), where we take these

Table 5 Running time in scenario 1

Problem size 40 80 120 160 200

MIP 600.13 – – – –

MIPH 600.10 – – – –

EDDLC 0.00 0.02 0.04 0.08 0.14

EffROP 3.90 28.1 91.90 217.50 356.00

EffROP ? position limit 1.13 7.67 23.75 50.66 77.54

EDD 0.00 0.00 0.02 0.04 0.07

EDD ? reoptimization ? position limit 1.33 8.90 23.68 43.67 82.56

Tabu 1.24 23.01 115.23 252.05 461.69

Table 6 Proportion of tardy jobs in scenario 1

Problem size 40 80 120 160 200

MIP 0.0975 – – – –

MIPH 0.01 – – – –

EDDLC 0.0425 0.0162 0.0291 0.0106 0.0175

EffROP 0.0075 0.0025 0.0008 0 0

EffROP ? position limit 0.0075 0.0025 0.0008 0 0

EDD 0.0375 0.0137 0.0166 0.0118 0.015

EDD ? reoptimization ? position limit 0.005 0.0025 0.0008 0 0

Tabu 0.0225 0.0037 0.0016 0 0.001

Table 7 Makespan in scenario 1

Problem size 40 80 120 160 200

MIP 161.03 – – – –

MIPH 144.38 – – – –

EDDLC 147.31 139.15 147.31 139.38 142.83

EffROP 138.13 122.23 121.07 115.92 118.54

EffROP ? position limit 138.23 123.94 124.03 117.96 123.68

EDD 147.13 141.59 146.65 141.81 146.55

EDD ? reoptimization ? position limit 137.33 121.78 125.34 120.87 120.87

Tabu 141.60 129.02 127.98 129.81 137.69
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parameters into consideration to avoid recipe changeovers while achieving similar

objectives of EDD. In general, EDDLC takes more advantages for cases of more

machines, longer due dates and smaller setup times.

Comparing Tables 6, 7 (with 5 jobs for each machine on average) with Tables 9,

10 (with 10 jobs for each machine on average), we observe that the variations in

solution qualities become larger when the average number of processed jobs per

Table 8 Running time in scenario 5

Problem size 40 80 120 160 200

MIP 600.04 – – – –

MIPH 600.06 – – – –

EDDLC 0.00 0.01 0.03 0.05 0.10

EffROP 22.33 220.11 435.13 520.83 577.13

EffROP ? position limit 1.59 9.80 30.82 72.20 110.80

EDD 0.00 0.00 0.01 0.03 0.05

EDD ? reoptimization ? position limit 1.56 10.30 26.37 62.38 109.97

Tabu 0.87 11.52 61.00 229.88 405.37

Table 9 Proportion of tardy jobs in scenario 5

Problem size 40 80 120 160 200

MIP 0.08 – – – –

MIPH 0.025 – – – –

EDDLC 0.0525 0.0487 0.0475 0.0281 0.0385

EffROP 0.0025 0.0125 0.0025 0.0018 0.001

EffROP ? position limit 0.0025 0.0125 0.0025 0.0018 0.001

EDD 0.0375 0.0337 0.0225 0.0206 0.0135

EDD ? reoptimization ? position limit 0.0025 0.0075 0.0016 0.0018 0.0015

Tabu 0.04 0.0387 0.0033 0.0075 0.0025

Table 10 Makespan in scenario 5

Problem size 40 80 120 160 200

MIP 281.17 – – – –

MIPH 247.16 – – – –

EDDLC 245.45 278.53 261.41 255.79 272.40

EffROP 225.94 247.45 235.67 229.87 248.99

EffROP ? position limit 226.70 248.86 244.20 221.04 247.54

EDD 243.08 278.58 258.80 255.19 271.65

EDD ? reoptimization ? position limit 225.59 254.79 237.68 224.92 249.78

Tabu 239.55 269.70 254.32 235.63 262.34
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machine increases. This fact may be caused by the accumulated variations of more

jobs to be processed by a machine.

If we take a closer look at the performance of EDD, EDDLC and those

implementations with reoptimization techniques from Table 5, 6, 7, 8, 9 and 10, we

observe that the reoptimization techniques can effectively improve the results of

dispatching rules, whether starting with the schedule by EDD or EDDLC.

Furthermore, these figures also indicate that our proposed position limit technique

does reduce a lot of running time for EffROP while achieving similar solution

qualities of EffROP.

When solving for small cases in scenario 1, TS and EffROP take similar amount

of running time, as shown in Table 5. Although TS is a little faster than EffROP for

solving cases in scenario 5, as shown in Table 8, it is always slower than the

EffROP with position limit implementation for solving cases in both scenarios. In

terms of the solution quality, Tables 6, 7, 9 and 10 indicate the objective by TS is

worse than all our proposed methods with reoptimization techniques such as

EffROP, EffROP with position limit implementation, and EDD with reoptimization

Table 11 Recipe changeover rate

Rules\scenarios 1 2 3 4 5 6 7 8

EDD 0.4234 0.4213 0.4204 0.4217 0.3980 0.3947 0.3992 0.3990

EDDLC 0.3843 0.3842 0.4180 0.4188 0.4285 0.4521 0.4498 0.5146

Table 12 Running time with long job lists

Problem size 100 150 200

EffROP 485.01 600.16 600.23

EffROP ? position limit 7.62 43.33 124.03

Tabu 9.97 53.80 98.73

Table 13 Proportion of tardy jobs with long job lists

Problem size 100 150 200

EffROP 0.20 0.18 0.21

EffROP ? position limit 0.17 0.12 0.18

Tabu 0.32 0.19 0.23

Table 14 Makespan with long job lists

Problem size 100 150 200

EffROP 1,144.24 1,154.15 1,428.03

EffROP ? position limit 1,130.86 1,058.85 1,095.44

Tabu 1,140.40 1,094.68 1,130.74
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and position limit implementation. In other words, the EffROP with position limit

implementation is more efficient and effective than TS.

5.4 Computational testings on cases of long job lists

According to complexity analysis and sensitivity analysis, we know that EffROP

may perform worse for cases of long job lists. Nevertheless, our proposed ‘‘position

limit’’ technique can avoid many ineffective reoptimization operations. To verify

the effectiveness of introducing the position limit technique, we compare ‘‘MIPH’’,

‘‘EffROP’’, ‘‘EffROP ? position limit’’ and ‘‘Tabu search’’ for 30 random cases

composed by (1) 10 random cases of 100 jobs and 2 machines; (2) 10 random cases

of 150 jobs and 3 machines; and (3) 10 random cases of 200 jobs and 4 machines.

Note that MIP or MIPH cannot give a feasible solution within 10 min for all of these

cases. The test results shown in Table 12, 13 and 14 indicate that our proposed

dispatching rule and reoptimization techniques (i.e. EffROP ? position limit) is the

most efficient and effective solution method for cases of long job lists.

6 Conclusions and future research

This paper deals with a difficult scheduling problem which commonly appears in

semiconductor manufacturing process. It involves sequence dependent setup time,

release time, due date and tool constraints. Due to the short product lifetime and

competitive markets, timing to enter a target market and capability to supply sufficient

products within minimum lead time whenever requested are crucial in the

semiconductor manufacturing industry. A semiconductor manufacturing company

that can produce more products within shorter time would dominate the market more

easily. On the other hand, owing to poor manufacturing plans a company may have to

lower down their sales price for their products. Thus we investigate how to schedule all

jobs to minimize number of tardy jobs and then minimize the makespan.

According to literature, the scheduling problems investigated in this paper are

NP-hard, and most previous literatures focus on dispatching rules and heuristic

algorithms such as TS and GA. We first try to calculate an optimal solution for our

scheduling problems by an MIP formulation, which takes a lot of storage space and

running time even for solving small cases. We then propose a reduced MIP

formulation called MIPH which estimates an upper bound on the number of jobs

processed by a machine to reduce the number of variables and constraints for MIP.

MIPH does give better solutions within shorter time than MIP, but it is still not

suitable to deal with real-world problems in semiconductor manufacturing that often

asks for an updated schedule for every few minutes. To this end, we propose

EffROP that includes a new dispatching rule EDDLC and three reoptimization

techniques based on local search mechanisms. Our tests show that EDDLC

outperforms EDD when there are many machines, small setup times and long due

dates. The EffROP based algorithms are better than TS and generate good results

very efficiently. For cases of long job lists, the position limit technique does help to

avoid ineffective reoptimization operations. We suggest the use of EffROP and
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position limit technique for solving difficult scheduling problems in semiconductor

manufacturing.

We suggest the following topics of research for future studies:

1. Develop new dispatching rules for specific problems. Dispatching rules are the

most commonly used techniques to deal with real-world scheduling problems in

practice. Here in our problem we develop techniques to reduce recipe

changeovers. There is still much room for developing better dispatching rules

for other challenging scheduling problems which involve batch processes, job

splitting or combining operations.

2. Derive more precise upper bound on the number of jobs processed by a
machine. In the MIPH formulation, we give an estimator for the upper bound of

the number of jobs processed by a machine to reduce the size of the MIP

formulation. How to identify better estimators for such an upper bound will be

an interesting and challenging research topic.

3. Better interchange scheme. According to our computational results, our proposed

local search mechanisms are indeed efficient and effective to deal with this

complex problem, and the proposed ‘‘position limit’’ technique of fixed length

(e.g. 3 neighbor jobs) also effectively reduce the running time without sacrificing

the solution qualities. It would be interesting to seek more systematic approaches

to decide on a set of consecutive jobs of dynamic size to interchange.
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